Putting the Oracle SPARC M7 Chip through its paces

From time to time I get an opportunity to dive under the hood of some pretty cool technologies in my line of work.  Being an Oracle Platinum Partner, Collier IT specializes in Oracle based hardware and software solutions.  On the hardware side we work with Exadata, Oracle Database Appliance and the Oracle ZFS Appliance just to name a few.  We have a pretty nice lab that includes our own Exatada and ODA, and just recently a T7-2.

 

download (1)Featuring the new SPARC M7 chip released in October of 2015 with Software in Silicon technology, the M7-x and T7-x server line represents a huge leap forward in Oracle Database performance.  The difference between the M7 and T7 servers is basically size and power.  The chip itself is called M7, not to be confused with the server model M7-x.  The T7-x servers also use the same M7 processor.  Hopefully that clears up any confusion on this going forward.  Here’s a link to a datasheet that outlines the server line in more detail.

 

In addition to faster on-chip encryption and real time data integrity checking, SQL query acceleration provides an extremely compelling use case for consolidation while maintaining a high level of performance and security with virtually no overhead.  The SPARC line of processors has come a very long way indeed since it’s infancy.  Released in late 1987, it was designed from the start to provide a highly scalable architecture around which to build a compute package that ranged from embedded processors all the way up to large server based CPU’s while utilizing the same core instruction set.  The name SPARC itself stands for Scalable Processor ARChitecture.  Based on the RISC (Reduced Instruction Set Computer) architecture, operations are designed to be as simple as possible.  This helps achieve nearly one instruction per CPU cycle which allows for greater speed and simplicity of hardware.  Furthermore this helps promote consolidation of other functions such as memory management or Floating Point operations on the same chip.

 

Some of what the M7 chip is doing has actually been done in principle for decades.  Applications such as Hardware Video Acceleration or Cryptographic Acceleration leverage instruction sets hard coded into the processor itself yielding incredible performance.  Think of it as a CPU that has only one job in life- to do one thing and do it very fast.  Modern CPUs such as the Intel x86 cpu have many many jobs to perform and they have to juggle all of them at once.  They are very powerful however because of the sheer number of jobs they are asked to perform, they don’t really excel at any one thing.  Call them a jack of all trades and master of none.  The concept of what a dedicated hardware accelerator is doing for Video playback for example, is what Oracle is doing with Database Instructions such as SQL in the M7 chip.  The M7 processor is still a general purpose CPU, however with the ability to perform in hardware database related instructions at machine level speeds with little to no overhead.  Because of this, the SPARC M7 is able to outperform all other general purpose processors that have to timeshare those types of instructions along with all the other workloads they’re being asked to perform.

 

sprinting-runnerA great analogy would be comparing an athlete who competes in a decathlon to a sprint runner.  The decathlete is very good at running fast, however he needs to be proficient in 9 other areas of competition.  Because of this, the decathlete cannot possibly be as good at running fast as the sprinter because the sprinter is focusing on doing just one thing and being the best at it.  In the same vein, the M7 chip also performs SQL instructions like a sprinter.  The same applies to encryption and real time data compression.

 

Having explained this concept, we can now get into practical application.  The most common use case will be for accelerating Oracle Database workloads.  I’ll spend some time digging into that in my next article.  Bear in mind that there are also other applications such as crypto acceleration and hardware data compression that are accelerated as well.

 

Over the past few weeks, we’ve been doing some benchmark comparisons between 3 very different Oracle Database hardware configurations.  The Exadata (x5), the Oracle Database Appliance (x5) and an Oracle T7-2 are the three platforms that were chosen.  There is a white paper that Collier IT is in the process of developing which I will be a part of.  Because the data is not yet fully analyzed, I can’t go into specifics on the results.  What I can say is that the T7-2 performed amazingly well from a price/performance perspective compared to the other two platforms.

 

Stay tuned for more details on a new test with the S7 and a Nimble CS-500 array as well as a more in depth look at how the onboard acceleration works including some practical examples.

 

 

 

 

 

 

hjh

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s